翻訳と辞書
Words near each other
・ Maurens-Scopont
・ Maurepas
・ Maurepas, Louisiana
・ Maurepas, Somme
・ Maurepas, Yvelines
・ Maurer
・ Maurer AG
・ Maurer Motorsport
・ Maurer Motorsport (Germany)
・ Maurer rose
・ Maurer, Perth Amboy
・ Maurer-Union
・ Maurerberg
・ Maurerische Trauermusik
・ Maurertown, Virginia
Maurer–Cartan form
・ Mauressac
・ Mauressargues
・ Mauretania
・ Mauretania (disambiguation)
・ Mauretania Caesariensis
・ Mauretania Comics
・ Mauretania Public House
・ Mauretania Tingitana
・ Maurette Brown Clark
・ Maureville
・ Maurezo Canevarius
・ Mauri
・ Mauri (surname)
・ Mauri Favén


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Maurer–Cartan form : ウィキペディア英語版
Maurer–Cartan form
In mathematics, the Maurer–Cartan form for a Lie group is a distinguished differential one-form on that carries the basic infinitesimal information about the structure of . It was much used by Élie Cartan as a basic ingredient of his method of moving frames, and bears his name together with that of Ludwig Maurer.
As a one-form, the Maurer–Cartan form is peculiar in that it takes its values in the Lie algebra associated to the Lie group . The Lie algebra is identified with the tangent space of at the identity, denoted . The Maurer–Cartan form is thus a one-form defined globally on which is a linear mapping of the tangent space at each into . It is given as the pushforward of a vector in along the left-translation in the group:
:\omega(v) = (L_{g^{-1}})_
* v,\quad v\in T_gG.
==Motivation and interpretation==

A Lie group acts on itself by multiplication under the mapping
:G\times G \ni (g,h) \mapsto gh \in G.
A question of importance to Cartan and his contemporaries was how to identify a principal homogeneous space of . That is, a ウィキペディア(Wikipedia)

ウィキペディアで「Maurer–Cartan form」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.